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Abstract: Accurate crowd counting and localization are particularly important in subsurface environments 
to assist decision-makers in critical security situations. Thus, we introduce an approach based on artificial 
intelligence to count and localize individuals, both emergency personnel and uninvolved persons, to resolve 
crowded situations. Our method needs a single image to predict the overall crowd count, density map, and 
precise locations of each individual, which could then be mapped to a common operational picture. With 
the additional precise person location information more concise end user information can be made possible, 
while simultaneously improving absolute counting information. 
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1. Introduction 

In subsurface and urban operations, one key element is to gather all possible information in a common 
operational picture (COP). This frontend supports the responsible operators who can cooperatively work 
with such a system. An example of a 3D COP was developed within the NIKE1 SOMT project (Hofer et 
al., 2020; Gegenhuber et al., 2022) which can be used simultaneously by multiple operators within a virtual 
reality system and was applied in several NIKE activities such as SubMoveCon and DHQ-RADIV (Perko 
et al., 2021). 

Since humans are of crucial interest in a subsurface or urban scenario, this work presents a crowd counting 
and localization approach based on optical and thermal cameras. The acquired multi-modal images, which 
are synchronized in time and co-registered in space, are the basis for a novel analysis method based on 
artificial intelligence (AI). The proposed method predicts the count of humans in the image and their precise 
locations. In case of fully calibrated cameras, the 2D results can directly be mapped in the 3D COP as 
described in (Perko, 2021). The underlying rational for using both optical and thermal cameras is the fact 
that such a system should also work under low or no light conditions. This is particularly important in 
subsurface environment but also for crowded events (like a music festival or a soccer game) that often take 
place during the night. Therefore, the presented approach can serve various applications, from small to large 
scale (border surveillance to demonstrations), with challenging illumination conditions. 

 

2. Setup and Methods 

This section reports on the proposed hardware setup, the algorithmic design, and the implementation for 
crowd counting and localization. 

a. Hardware Setup 

To set up a camera system for combined recording of optical (RGB) and thermal infrared (TIR) imagery we 
chose the cameras listed in Table 1, which represent well-known industry standard. The lenses are selected 
to provide approximately the same field of view, resulting in a ratio of RGB to TIR resolution of about 1:5 
vertically and horizontally. 

 
1 NIKE is the abbreviation for „Nachhaltige Interdisziplinarität bei komplexen Einätzen unter Tage“ or „Sustainable 
interdisciplinarity for complex subsurface operations“. 
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Table 1: Technical specifications of the RGB and TIR camera. 

Parameter RGB camera TIR camera 

Model / Type Allied Vision GT3400C Optris PI 640 

Interface GigE USB 

Framerate  10 Hz 32 Hz 

Sensor type Interline CCD (Color) FPA (uncooled Bolometer) 

Pixel size 3.69 µm 17 µm 

Resolution 3382 x 2702 pixel 640 x 480 pixel 

Focal length 12 mm 10.5 mm 

Field of view 55° x 45° 60° x 45° 

 

For a first prototype of the camera system, both cameras were integrated in weatherproof housings and 
mounted side by side on a stable aluminium plate equipped with a tripod adapter (see Figure 1). The total 
weight of the camera system (without tripod) is about 8 kg. First test recordings were taken in December 
2022 at the JR DIGITAL office looking down from the 4th floor to the street level. Observation of cars and 
walking people allows evaluation of image quality with moving objects at distances up to 250 m. 

 

Figure 1: Combined RGB/TIR camera prototype mounted on a tripod, first test recordings at JR DIGITAL, Steyrergasse 17, Graz (4th floor). 

Obviously, one very important aspect is to provide a synchronized recording of the RGB and TIR frames, 
respectively. The RGB camera can be triggered by an external source but the TIR camera is a free-running 
sensor, which only allows flagging the next frame taken after a trigger signal is set. Using the RGB camera 
as the “reference camera” to be configured at a certain frame rate does not lead to a stable synchronization 
and produces missing frames from time to time. Therefore, the other way round was implemented and the 
TIR camera is used as the trigger source for the RGB camera. As the 32 Hz frame rate is higher than the 

maximum RGB frame rate, the TIR sync signal has to be divided by a factor  3 before it can be used as 
the RGB trigger input signal. The according trigger electronic was developed in-house and can be controlled 
by a computer via a LAN interface. The trigger method described above is considered to be very stable and 
accurate, which is empathized by using the acronym S-RGBT (abbreviation for “Synchronized RGB and 
TIR” camera). 

In order to get a well-registered RGB/TIR image it is also necessary calibrating both cameras for internal 
and relative orientation parameters (for details see our work on multi-modal multi-sensor calibration 
(Ladstädter et al., 2023)). This was done in the measurement lab of the Institute of Engineering Geodesy 
and Measurement Systems (IGMS) at Graz University of Technology (TUG), which is equipped with special 
(electrically heated) thermal markers (compare Figure 2, left side). After removing geometric distortions and 
determination of a projective transformation between both image modalities, the image sample in Figure 2 
(right side) was generated. As can be seen from the walking person in the middle, the images are 
geometrically correct and synchronized in time. 



Perko et al. (2023): Crowd Counting and Localization for Subsurface Operations 

 

3 
 

 

Figure 2: Geometric calibration of the S-RGBT camera system in the measurement lab (IGMS/TUG); Synchronized and co-registered image sample 
where parts of the TIR image are superimposed on the RGB image. 

b. Algorithmic Design 

A standard approach for crowd counting is to estimate the object density for each pixel in the given input 
image, where the sum over this density equals the object count (Lempitsky and Zisserman, 2010; Perko et 
al., 2013; Almer et al., 2016). Lately, various AI-based network architectures were proposed, which use an 
encoder-decoder scheme based on convolutional neural networks (CNN) (cf. the review in Perko et al., 
2021). The exemplary high-level workflow for counting via density estimation is depicted in Figure 3. Such 
algorithms allow counting the objects of interest, but cannot localize individuals. 

 

Figure 3: Deep learning architecture for crowd counting. Classical counting via density estimation where the network predicts an output density and, thus, 
indirectly the object count. 

Our proposed network design uses an encoder mainly as a strong feature extractor, which is followed by 
two separate prediction heads. The first predicts a fixed number of 2D locations of objects in the image, 
whereas the second predicts the according confidences. Predicted points with a confidence below 0.5 get 
discarded. The remaining points define the localization of individuals where their count is directly given. 
Object densities could be simply generated by smoothing the point locations with a Gaussian kernel as, for 
example, as described in (Lempitsky and Zisserman, 2010; Perko et al., 2021). The resulting high-level 
workflow is depicted in Figure 4 and follows the principle of (Song et al., 2021). 

 

Figure 4: Deep learning architecture for crowd counting and localization. Our proposed design predicts the location of objects in form of 2D points, together 
with confidences and the overall human count. 
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c. Implementation 

Our implementation follows the workflow of (Song et al., 2021) and represents a fully end-to-end trainable 
network. One crucial step is the comparison of point predictions from the prediction heads to the ground 
truth object locations. Here, a one-to-one matching is performed based on the Hungarian algorithm (Kuhn 
1955), such that the point set can be divided into a positive and a negative set. This information is then the 
basis for training the deep neural network via backpropagation. 

 
3. Results 

This section reports the first results of the proposed hardware and software components. The ability to 
capture synchronized image data is demonstrated and also further improvements in regard to person 
counting and localization are shown. 

a. Hardware 

Despite the fact that first results with the S-RGBT camera prototype delivered satisfying results (see Figure 
2), both the synchronization and the geometric co-registration need further investigation to reach the best 
possible results: (1) Synchronization: There is a constant, yet undefined time offset between the mid 
exposure of the TIR frame and the TIR sync pulse. This could be measured by a rotating target (visible to 
RGB and TIR cameras). If, in addition the variable RGB exposure time is considered, the mid exposure of 
the RGB and TIR camera could be synchronized even more precisely. (2) Co-registration: The baseline 
between the cameras is about 12 cm, which results in horizontal parallaxes for short object distances (~15 
RGB pixel @ 25 m). This can be optimized by reducing the baseline even further, but this is limited by the 
camera housings. If a depth map is known for the camera view (or approximated by the viewing geometry) 
one could try to correct, for example, the TIR image for distance dependant parallaxes in a pre-processing 
step. This would improve the geometric co-registration significantly at the cost of additional computational 
effort. 

b. Software 

As a proof of concept, we trained and validated the proposed algorithm on two benchmarks and compared 
the results to state-of-the-art approaches. In particular, we chose the ShanghaiTech Part A (SHHA) (Zhang 
et al., 2016) and the NWPU (Wang et al., 2020) benchmarks and compared the results to the following other 
methods: (1) Multi Column Method (MCNN) (Zhang et al., 2016), (2) Congested Scene Recognition 
Network (CSRNet) (Li et al., 2018), and (3) Context-Aware Method (CAN) (Liu et al., 2019). For validation 
we used two metrics, namely the mean absolute error (MAE) and the root mean square error (MSE) of 
counting discrepancies over all images on the according test set (not used for training, cf. (Perko et al., 
2021)). Results are reported in Table 2. Actually, the presented method outperforms the others in 3 out of 
4 metrics. The large MSE value of our experiments at the NWPU benchmark stems from the fact, that we 
downsampled the training and testing images to a maximal width respectively height of 2048 pixel for 
speedup (corresponding to about 3 MP per image). Thus, very large images with up to 73 MP with human 
counts up to 20.000 lose their details, such that the persons are not recognizable in the downsampled 
imagery. We could change our procedure for such images however this was not the focus of this work. 

Table 2: Performance indicators for the two benchmarks. Best results are marked in bold face. 

architecture SHHA 
MAE                        MSE 

NWPU 
MAE                       MSE 

MCNN 110.2 173.2 232.5 714.6 

CSRNet 68.2 115.0 121.3 387.8 

CAN 62.3 100.0 106.3 386.5 

ours 53.1 82.5 102.8 648.4 

 

Since, the presented S-RGBT camera system will have its first appearance at the “Donauinselfest” in Vienna 

in June 2023, we show expected results for subsurface scenarios in Figure 5 and for urban scenarios in 

Figure 6. 
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Figure 5: Examples of crowded subsurface scenes in Frankfurt (top) and in Budapest (bottom). Original image (left), human density overlay and estimated 
crowd count (middle), and localization of each individual (right). Image Source: www.pixabay.com. 

  
Figure 6: Examples of crowded urban scenes from a sport event (left) and from a concert (right). Shown are the localization of each detected individual. 
Image Source: NWPU benchmark. 

 

4. Conclusion 

This work presented our S-RGBT camera system, consisting of a synchronized RGB and TIR camera. The 
system is triggered with custom electronics and was also geometrically calibrated. In addition, we proposed 
a human counting method which, in contrast to various state-of-the-art methods, yields the precise location 
of each detected individual while also providing high counting accuracies. These first promising counting 
results were demonstrated on the RGB image modality. 

The presented hard- and software concept will have its first appearance at the “Donauinselfest” in Vienna 
in June 2023. The focus will be on several aspects: First, to evaluate the ease of use of our recording hardware 
in a real scenario. Second, to validate the counting and location accuracy in real life. Third, to validate to 
which extend the TIR images are able to assist the counting procedure. 

Future resources will be put into even better synchronization based on measuring the time offsets of mid 
exposures and into transformer-based architectures for crowd counting (cf. (Liang et al., 2022)). The latter 
should lead to faster convergence in training, since the patch and batch sizes could be increased, as those 
architectures need less GPU RAM. 
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